
 1

The	
 Philosophy	
 of	
 Systems	
 Engineering	

Derek Hitchins

Abstract	

Systems engineering was engendered, partly, to manage rising complexity in man-made systems, which was
supposedly threatening to overwhelm engineering managers in the second half of the 20th Century; it was
also inspired by a need to “get the best” out of, i.e. to optimize the performance of, complex military
systems. The, then, new discipline appears retrospectively to have been founded in biology, rather than the
physics of engineering, perhaps since biologists and anatomists had previously found an effective method of
managing complexity in the human body. This method could, in principle, be applied in the new discipline
of systems engineering to manage complexity, using holism, synthesis and organicism as guiding principles.
The paper considers how systems thinking, systems practice and systems engineering were inspired by this
systems philosophy then, and now.

Systems engineering emerged as a problem-solving discipline, initially adopting a simple systems
engineering problem-solving paradigm that allowed designers to manage complexity, optimize solutions
and avoid becoming embroiled in confusing detail at an early stage of systems design. An alternative form
of systems engineering developed in Japan, operating at industry level rather than the West’s
project/enterprise level. The Japanese also famously employed kaizen, the philosophy of continuous
improvement, as opposed to the West’s so-called Big Bang approach, (get it) Right First Time!

Following the biological metaphor, systems engineering could be seen to synthesize wholes from
subsystems, themselves wholes. Wholes were made from interacting parts where the whole could be greater
than the sum of its parts. The subsystems could be made from engineered artifacts, or people, or teams, etc.,
so long as they were wholes. Some ‘internal systems’ could also be seen as organizing and managing other
systems within any whole. Ways were devised of conceiving and designing systems such that the
complexity did not overwhelm the designers.

A review of systems engineering as it had evolved by 1986 showed that it was limited in its ability to
address complex issues and problems: a systems methodology from 2007, based on the original system
theoretic/biological metaphor, showed the difference between the two. Even more marked, however, was
the differences between both of these and today’s version of systems engineering, which describes itself as
multidisciplinary engineering (i.e. engineering), no longer vaunts any claim to the management of
complexity, and appears quite unlike its progenitor.

Introduction	

Systems engineering was founded, inter alia, in two concepts: first, that it was sensible to
view some sets, or collections, of interacting ‘things,’ elements, artifacts, people, etc., that
could be consistently described by their behavior, as singular wholes, holons or ‘systems’;
and second, that it was possible to synthesize more complex systems from parts and
systems of lesser complexity. Both concepts transcended the characteristics of discrete
parts; in other words, the same principles seemed to apply regardless of the nature of the
elements involved.

Systems scientists in the second half of the 20th Century, notably Ludwig von Bertalanffy,
expounded General Systems Theory (GST) (Bertalanffy, 1950). Systems theory and
systems science were intended, inter alia, to overcome the increasing degree of

 2

engineering specialization prevalent at the time, leading inexorably to increasing
complication and perceived complexity, which was supposedly overwhelming
engineering managers. GST was heavily mathematical in style, and did not catch on;
however, the models and methods of GST were simpler to grasp and are still much valued.

Although the term would not be coined until around 1940 in the US, ‘systems
engineering’ as a concept and philosophy may be traced back to ancient Egypt and the
Pyramids, if not earlier. In the modern era, it was manifest in the progressive optimization
of the UK Air Defence System over the period 1936 to 1940, at which point it played a
crucial role in the Battle of Britain. It rematerialized in the Cold War of the 1950s as the
Total Weapon System (TWS) Concept, a grand design which, in the UK, saw air defense
ground radars, airborne early warning aircraft, and squadrons of Hunter and Javelin
interceptors integrated into one system with the single aim of defending the UK against a
perceived Soviet air threat.

The first real flowering of the TWS Concept came in the late 50s and early 60s, with the
advent of Linesman Mediator and the iconic Lightning interceptor, reputedly capable of
Mach 2+, with climb capability of 0 to 90,000ft in three minutes…but with radar and
missile capabilities limited by the need to sustain such phenomenal performance. The
ambitious scheme, Linesman Mediator, saw the coupling of civil and military air traffic to
afford nationwide surveillance and control. Linesman, the military part, was to form a
focal point from which all of the Lighting aircraft were to be remotely controlled,
simultaneously to engage the threat from Soviet standoff weapons, many-on-many
(Hitchins, 2007.) The situation eerily presaged the Soviet MIRV threat facing the US two
decades on, which instigated President Reagan’s Strategic Defense Initiative.

Successive UK air defense systems were more capable and more complex. Systems
engineering philosophy and capability evolved, becoming preeminent in managing
complexity, and with ensuring TWS performance, which was stretching contemporary
technological boundaries in defense. In the 1950s, 60s, 70s and 80s, systems engineering
became a byword in the West for innovation, creativity and the management of
complexity.

The philosophy1 of systems science and of systems engineering theorizes how these
disciplines were intended to manage innovation, creativity and, particularly, complexity.
The paper seeks to identify the foundations of that philosophy and how, if at all, it has
motivated and sustained systems thinking, systems practice and systems engineering…

Levels	
 of	
 Organization	

Part of the “systems approach” to managing complexity appears, retrospectively, to have
found its origins in biology’s ‘Levels of Organization,’ with which today’s schoolchildren
may be familiar – see the left hand column of Figure 1, which shows the well-known
holarchy/hierarchy: cell, tissue, organ, organ system, organism, etc. So, a tissue is more
complex than a cell, an organ than a tissue, an organ system than an organ, and so on.

1 Study of the theoretical basis of a particular branch of knowledge or experience. Oxford American
dictionary

 3

Plus, each level of organization is formed from the emergent properties of the level below,
rather than from its intrinsic properties. The center column of Figure 1 relates this
biological/anatomical holarchy/hierarchy to that of manmade systems.

The figure suggests that humans, as organisms (‘wholes of interdependent parts’),
correspond to platforms, which are typically vehicles, ships, planes, tanks, etc.: this works,
in the sense that we humans effectively carry with us, as part of us, our means of
locomotion, our sensors, and our intellects, much as does, say, an automobile or a ship.

The right-hand column of Figure 1 presents the corresponding layers (rather than levels)
from the 5-layer systems engineering model (Hitchins, 2003), with the basic Layer 1,
Product/Subsystem Engineering, corresponding to manmade Subsystem level: this
suggests that the synthesis of subsystems is, relatively, the least complex of SE tasks. The
5-layer systems engineering model, then, concerns itself with managing the synthesis of
successive ‘degrees’ of complexity, of which societal/socioeconomic systems engineering,
as practiced, typically, by governments and politicians, is the most complex.

Below Layer 1 in Figure 1 is artifact1 engineering, concerned with the making of parts
and composites of parts. This is consistent with the acknowledgment that systems
engineering does not make anything (sic), at least not in the sense of manufacture i.e.,
making by hand. Making artifacts is engineering. Managing the making of artifacts is
engineering management. It seems eminently reasonable, therefore, that software – a
handwritten artifact – is engineering too…

1 Dict: Artifact; any object made by human beings, especially with a view to subsequent use.

Figure 1. Levels of Organization in Biology and Man-made Systems

 4

On the other hand, systems engineering may synthesize manmade systems from artifacts
previously made by engineers. Systems engineering may also synthesize manmade
systems without using artifacts, e.g. in creating an organization (arrangement of people
systems), in creating a strategy (a plan of action or policy designed to achieve a major or
overall aim), in revising a systems architecture (reconfiguration) with differing emergent
properties, etc., etc. As with the Battle of Britain Air Defence System in 1940, systems
engineering may operate in vivo, as well as in vitro. So:

• A systems engineer may devise, plan and implement new tactics for a squadron of
fighters to undertake interceptions, to evade enemy defenses, etc.

o S/he might be called a ‘Weapon Systems & Tactics Officer.’
• A systems engineer may devise alternative architectures (3:4:3; 4:4:2) and tactics

for a soccer team comprised of defenders, midfielders and strikers (subsystems).
o S/he might be called a soccer team coach or manager, and may be unhappy

to be called a systems engineer…

In vivo systems engineers may go by alternative titles, happily unaware that they are de
facto practicing systems engineers of a kind…

Systems engineering’s concern with emergence and levels of organization so closely
parallels that of biology and anatomy that it seems not unlikely that early system scientists
employed a biological/anatomical metaphor in formulating complex systems engineering
with its powerful approach to managing complexity…

Managing	
 Complexity	
 in	
 Large-­‐scale	
 Complex	
 Systems	

Using the reductionist hierarchy of Figure 1, it is possible to ‘divide’ the complexity of
complex organizations, technological devices, socio-economies, etc., into a succession of
hierarchy levels, such that an individual addresses only three levels: the one of immediate
interest; the one above, to which an individual may report or refer; and the one below,
which ‘contains’ subordinates.

This three-layer concept for managing complexity in both systems management and
systems engineering may be elaborated to accommodate large-scale, complex system,
Figure 2. The figure might be best viewed as looking down upon a cone, at the peak of
which is a central Systems Engineering Management team, Level N.

Immediately surrounding the center are archetypal systems engineering functions:
problem-solving; solution conception; concept of operations (CONOPS); purposing;
solution space and threat assessment; functional design; functional/physical architecture;
specification of requirements; and so on. Each and every SEM team at Levels N-1 and N-
2 will perform these same systems engineering functions for their own (organic)
subsystems, although at different levels of complexity. Where these SE tasks result in the
need for technology engineering and/or acquisition, then the appropriate SEM team will
task engineering management/project engineering to design and manufacture to their
specification.

 5

In this way, the whole is partitioned into interconnected parts with carefully defined
interfaces, such that no individuals or teams find themselves overwhelmed by complexity,
each operating within their own 3-layer ‘scenario:’ the most complex of challenges may
be met and managed in this manner. In practice, such organizations are supported by
management and design committees, such that meetings at Level N include delegates
from Level N-1, meetings at Level N-1 receive delegates from N-2, and so on. Policy
decisions from Level N may be passed down through the levels, and problems from the
lower levels may be passed up the hierarchy for attention at higher level.

For large scale, complex systems and their programs, then, it appears to be the case that
the management of complexity employs the holistic and organismic practices of
considering the whole as comprising interacting parts, themselves wholes (holons), and so
sensibly evading the detail of what might be ‘inside’ the parts; and also employs
corresponding systems management structures and organization.

Systems	
 Engineering	
 Paradigms	

Systems architecting and systems engineering may be concerned, then, with managing
complexity, often in large-scale systems and multi-level programs. Managing complexity
is neither purpose nor objective, however: systems architecting and systems engineering

Figure 2. Self-similar Systems Engineering Management Schema

 6

need purpose in managing complexity. To this end, systems engineering may be described
as paradigmatic, and there may be more than one paradigm.

Problem-­‐solving	
 paradigm	

Systems engineering in the West has been considered, generally, to follow a problem-
solving paradigm. See Figure 3, which elaborates the problem-solving paradigm, first to a
systems engineering methodology1, then to a systems engineering strategy and plans to
address a problem in context, and finally to systems engineering process, tools and
methods to solve/resolve/dissolve the problem in context.

Figure 3. Elaborating from the Systems Engineering Problem-solving Paradigm

It follows from the figure, that – while conceivably there may be one archetypal systems
engineering methodology – systems engineering strategies and plans may vary according
to the problem in context, and in particular upon whether to solve the problem (i.e. find a
“correct,” or “best,” answer), resolve the problem (i.e. find a solution that satisfices, is
“good enough,”) or dissolve the problem (i.e. change the situation such that the problem
no longer arises, or becomes insignificant). (Ackoff & Emery, 1972.)

Japanese	
 Continuous	
 Circular	
 Flow	
 Paradigm	

Toyota in Japan has developed a substantially different way of going about systems
engineering on the grand, global scale, one that might be said to follow a “continuous
circular flow paradigm.” See Figure 4, showing a clockwise “market pull” concept, where
nothing is made unless it is already sold, complemented by an anticlockwise flow of
money. (Womack, 1990.) A lead company assembles parts from a ‘fan-out’ of supply
companies. The lead company supplies to the market. Unlike mass production, however,
the flow of materials, parts, subassemblies, etc., occurs only on demand. The aim is to
reduce work-in-progress to a minimum, ideally to zero, and at the same time to have a
steady flow of products being sold to the market. The market is encouraged to ‘demand’

1 Methodology: a system of methods used in a particular area of study or activity. Oxford
American Dictionary

 7

by continual innovation, making each new product so attractive that it becomes a “must-
have” to the customer.

Metrics:—
1.!Flow rate around the system
2.!Proportion of circulation time/resources spent in Market

Suppliers

Resources

Company

Market

Market
obsolescence

Scrapping

Recycling

FailuresRepairs

Spares,
skills,
data

Market
pull, money

Response
to demandCompany

pull, money

Parts on
demand

Resources
on demand

Supplier
pull, money

•!multi-sourcing
•!reconfiguration

•!source and market
!replacement
•!multi-sourcing
•!reconfiguration

Co-ordination
and co-operation

to establish
and maintain
circular flow

Market
pull, money

Innovation

Dissatisfaction

Extraction

Figure 4. Lean Volume Supply Circular Concept (Hitchins, 2003)

Recycling obsolescent vehicles completes the circle, reminiscent of the Ouroboros, the
ancient symbol of the snake or dragon eating its own tail, representing the perpetual
cyclic renewal of life, the cycle of life, death and return, leading to immortality. Certainly,
the circle is seen as strong, with no point of entry or exit, with no beginning or end, and –
since the elements within it are being continually adapted and renewed – the lean volume
supply circle has no perceivable lifecycle…
Optimization within this paradigm is through kaizen, such that elements in the circle are
continually being adjusted and adapted to improve overall ‘circular performance,’
reminiscent of the earlier progressive optimization of the UK Air Defence System.

Comparisons There is, however, a significant difference between the continuous
(virtuous?) circle of Japanese industrial systems engineering and the West’s problem
solving systems engineering: in the West, the cycle is usually seen as a continual arising
and solving of problems, with each solution comprising some new or modified system to
be delivered to a customer.

In Japan, the industrial circle is the system solution, i.e., the systems architects and
systems engineers exist and operate continuously within, and as part of, their solution
system, which steadily rotates material – innovative products – around the loop. So, their
systems engineering is of the operational variety, in that they are continuously improving,
enhancing and rebuilding the system in which they exist, perform and operate – in this
respect, they are their own customers.

 8

This practice is consistent with kaizen, the Japanese philosophy of continuous
improvement, which contrasts markedly with the West’s ‘Big Bang’ philosophy of
‘Right First Time.’ Comparing the Japanese approach with that of US mass production at
the end of the 20th century, a distinct difference could be seen. See Table 1 (Hitchins,
2003). As the table suggests, the philosophical differences between US Mass Production,
Henry Ford style, and Toyota’s Lean Volume Production, are legion. (Womack et al,
1990)

Table 1. Comparing 20th Century US Mass Production with Japanese Lean
Volume Supply

Mass Production Comparison Lean Volume Supply
Profit Objective Survival

Free Competition Between circles
Free Market Regulation Indiginization

Production Push Assembly Market Pull
Cost Plus Pricing Market Minus

Adversarial Contract Synergistic
Specialist Defense Homogeneous

Hire and Fire Labour Jobs for Life
Specialization Skills Multi-skilled

Lowest Bid Wins Suppliers Vital source—protect
Supplier stocks Inventory Nobody stocks

Complexity	
 and	
 Systems	
 Engineering	
 Principles	

Systems engineering seeks to solve complex problems by creating one or more system
solutions comprised of interacting subsystems: the subsystems and their interactions are
designed and configured to cooperate and coordinate their various functions and actions
synergistically to create a unified whole, which will perform with optimum effectiveness
in its operational environment and context. Systems engineers, in effect, seek to predict a
future in which the yet-to-be-created solution system solves the complex, now-and-future
problem. To achieve this, systems engineering draws upon a priori knowledge of how
systems and subsystems behave in context, coupled with simulation and testing of
proposed solution systems in their anticipated context and environment.

In seeking a solution to any complex problematic situation, systems engineering may
observe three guiding systems principles, which require justification:

• Holism: the theory that parts of a whole are in intimate interconnection, such that
they cannot exist independently of the whole, or cannot be understood without
reference to the whole, which is thus regarded as greater than the sum of its parts.

o Holism requires that the systems architect/systems engineer focus and
practice on the whole system; whole problem, whole solution, in context:

 Providing less than the whole solution fails to solve the whole
problem

 9

 Addressing only part of the problem permits the unaddressed
problem-parts to aggravate the problematic situation, so potentially
counteracting any part solution…(Lewin, 1949)

 Context is vital to anticipate emergence, performance and
effectiveness

o Holism also invokes the subtle notion of concinnity, such that the various
subsystems balance function, form, behavior and configuration in
comprising the whole.

• Synthesis: the combination of parts – subsystems – to make a unified whole. It is
the antithesis of reductionism, decomposition and analysis:

o As Figure 1 showed, each Level of Organization comprises the emergent
properties of the level below. It follows logically that to create some whole,
the system parts must be brought together in interaction, to engender the
emergent properties of the interacting system parts. Since this applies at
each and every level, synthesis becomes the sine qua non for creation of
complex solutions…

• Organicism: Organicism emphasizes the organization, rather than the composition,
of systems:

o Organicism emphasizes the way in which the system parts are brought
together, i.e. their functional/physical architecture

o Organicism may be seen as an aspect of synthesis

The three guiding principles infuse the proper practice of systems engineering. Holism,
for example, pervades systems design optimization, which seeks the best operational
solution-in-context. Such optimization of the whole may be effected by:

• Altering/rebalancing the emergent properties of the various interacting subsystems
(synthesis)

• Amending the interactions between the subsystems – making new connections,
changing connections, altering the degree of interactions (binding and coupling)

• Re-organizing/reconfiguring subsystems to form different functional/physical
architectures with different emergent properties (organicism).

Systems	
 Engineering	
 and	
 Innovation	

The systems engineering problem-solving paradigm (SEPSP), Figure 5, has been used to
solve problems for over sixty years, not only in systems engineering, but also in industry,
commerce, management, economics and politics. The idea is disarmingly simple. Having
defined a problem space, conceive a number/variety of optional solutions and –
independently – identify criteria by which to judge a good solution. These might include
feasibility, performance and effectiveness across a range of foreseeable environments and
contexts, availability, survivability, affordability, risk, and so on…The solution options
are then traded against the various criteria to find the preferred option (best fit), which
would be deemed optimum, or “best in context and circumstances.”

By introducing a variety of optional solutions, the door is opened to innovation – for,
perhaps, a different way of doing things, or using different technology, or introducing

 10

automation, or having a self-healing solution, or going for the cheapest option that might
do the job, or choosing the most effective regardless of cost…

The systems engineering problem-solving paradigm can be used extensively throughout a
project. Some organizations have employed the SEPSP as an in-company mantra,
employing it on a team-by-team basis, sometimes several times a day, whenever a
decision had to be made. The results were impressive, perhaps because it necessarily
included many of the systems engineers in decision-making, which not only improved
decision-making, but also created a sense of inclusion in these so-called Systems
Thinking organizations

The	
 General	
 Problem-­‐solving	
 paradigm	

While the Systems Engineering Problem-solving Paradigm is valuable in decision-making,
it is not particularly helpful when it comes to exploring and solving complex problems.
Problem investigation and solving is crucial to complex systems engineering. One
approach is to employ the General Problem-solving Paradigm (GPSP) shown
diagrammatically as a procedure in Figure 6.

The procedure is straightforward: first, nominate the issue (problematic situation) to be
addressed; then, following the procedure, identify problem components, group them into
problem themes, and model these themes to create an ideal world, i.e., one in which the
problems do not appear; then compare this ideal world with the real world and all its
problems, and use the differences as an agenda for change, resulting – hopefully – in
improvements to the problematic issue. Towards the end of the procedure, as indicated by
the decision diamond, verify that the change agenda, if implemented, would eliminate the

Figure 5. The Systems Engineering Problem-solving Paradigm

 11

original set of symptoms, else repeat the procedure since some problems may have been
overlooked…

Creativity	
 and	
 innovation	
 in	
 systems	
 conception	
 and	
 design.	

One aspect of problem solving not adequately addressed by the GPSP is that of creativity
and innovation within the “change agenda” – which essentially comprises solution-
systems conception, CONOPS, and systems design.

Innovation does not result from prescriptive process. It is the product of human ingenuity
and creativity: this can be promoted by bringing together a group of people of contrasting
backgrounds, skills and experience who may interact in a creative, supportive, non-
pejorative environment; systems engineering management creates that environment.

The early stages of systems engineering may be characterized by series of brain-storming
sessions, some including customers, stakeholders1, future user-operators, domain experts,

1 Stakeholders: those who stand to gain, or particularly to lose, from the successful
completion of a project or enterprise.

Figure 6. General Problem-solving Paradigm (GPSP)
(Hitchins, 2007)

 12

experienced and inexperienced systems engineers, etc. It is the mix of bright, open-
minded people and the uninhibited environment that generate fresh, new ideas. So,
inevitably, no smart people – no innovation: authoritarian control – no innovation:
prescriptive process – no innovation.

Pursuing the CONOPS can create a significant variety of strategies and consequent Prime
Mission Functions (PMFs) to effect those strategies.1 Why PMFs? To distinguish such
‘externally visible’ functions from the ‘internal’ functions that must take place within the
system in the management of the PMFs: see Figure 7. In any mission, the many PMFs
may not be active all at once. Some may not be active at all, but exist as safeguards, or
precautions. So there arises the need to “orchestrate” the cooperation between, and the
coordination of, the many PMFs. In complex systems, too, the PMFs may provide
overlapping and inconsistent data, which then has to be merged according to source error
characteristics.

It is helpful to examine these Internal Management Functions under three headings, as
shown in the figure:

• Mission management systems. These are systems that manage, control, co-
ordinate and deploy mission-specific functions. A weapon, or a strategy, might be
mission specific, so the facilities associated with arming/delivering the weapon or
coordinating the strategy would constitute mission management systems.

1 The conception of PMFs and internal functions is but one of many ways to formulate
systems design and architecture. Systems architects may have idiosyncratic approaches.

Figure 7. Relationship between Prime Mission Functions and Internal
Management Functions.
Prime Mission Functions are those evident to an external observer. Internal functions are those that
may be deduced to exist ‘within’ any open system as it exchanges energy, substance and information
with its environment and as it ‘orchestrates’ PMF activities

 13

• Viability (or platform) management systems. These are systems that maintain
the platform in a capable state, ready for anything, but are not mission-specific. A
navigation system or a commercial department would be part of viability
management suite, since these would be continually active, regardless of particular
mission…

• Resource management systems. These are systems that acquire, distribute,
supply, convert and dispose of resources. Resources include fuel and energy,
consumables, payloads, finance, personnel, etc., etc. according to system type.

Understanding/
Specifying

the Requirement

Selecting
Preferred

Design

Specifying
Design

Implementation

Assemble

Procure

Manufacture

Sub-system Design

Integration
& Test

Test &
Trials

Installation

Commissioning

Transition
to Operation

Operation

Generating
 Design
Options

Identifying
Design
Drivers

Update/
Evolution

N.B. Rounded Boxes
are Project Engineering,
not Systems Engineering

Partition the
System into

Sub-systems &
Connections

Manage

Configurations,

Maintaining

Compatibility
(Design Integration)

Maintain

Harmony

Between

Developing

Parts
(System Integration)

 Figure 8. Archetypal Systems Engineering Plan. (Hitchins, 1992)
Round-cornered boxes are project engineering, not systems engineering

 14

Models	
 of	
 Systems	
 Engineering	

Classic	
 Systems	
 Engineering,	
 mid	
 ‘80s	

Models of systems engineering have existed for many years; Figure 8 shows a typical
systems engineering plan from 1986. Figure 8 starts at the bottom with the problem
(Understanding and Specifying the Requirement) and works to the top with update or
evolution – it was not assumed that the system will be replaced; instead, it may evolve
and adapt in line with the changing situation and need for improved performance and
effectiveness.

Returning to the start, the systems engineering problem-solving paradigm is evident in:
Generating Design Options, Identifying Design Drivers and Selecting Preferred Design:
note, too, Partitioning System into Subsystems and Connections, which effectively
formed architecture (organicism).

The plan was consistent with the understanding that systems engineering made and
manufactured nothing, while engineering did indeed make, manufacture, install and
commission, operate and update... The plan was archetypal in the sense that, for any real
project, the plan would be adapted/converted to serve real world situation, domain and
context.

Note the continual reliance on simulation modeling to predict effectiveness, throughout;
the maintenance of an audit trail, essential to accommodate customer’s frequent changes
of mind (often later ‘conveniently forgotten;’) and systems engineering management &
planning, which was continually revising in line with problems and progress.

Classic	
 Systems	
 Engineering	
 Organization	
 &	
 Method	

Systems Engineering Management followed a standard plan, of which Figure 9 would be
typical. The figure indicates the skills that would be required under each of the major
headings. As with Figure 8, the headings marked Equipment Engineering and Software
Engineering were not systems engineering, per se, but engineering, to be effectively
managed by systems engineering which provided the requirement specifications for, and
supervised, engineering work to guard against requirement ‘creep,’ and changes to
emergent properties.

Activity moved from left to right in the figure, starting with:

• Operations Analysis. The principal output from Operations Analysis was the User
Requirement Specification (URS), showing what the user needed (wanted?) in the
way of facilities and capabilities to perform in his rôle.

• Requirements Analysis, which used the User Requirement Specification (URS) as
a principal input, and which gave, as its principal output, the System Requirement
Specification (SRS).

• Systems Design, which took as its principal input the SRS, and gave as its
principal output a matched set of Performance and Design Requirement
Specifications (PDRs)

 15

• These PDRs then served as the inputs to Equipment Engineering, and Software
Engineering. In this classic systems engineering scheme, equipment1 and software
were subcontracted. PDRs would be used as part of competitive tendering to select
preferred subcontractors.

• Once equipments and software were engineered – or acquired – the finished
products were brought together for Test and Integration

• Finally, Acceptance Trials followed Installation and Commissioning…

Note the absence of project management from Figure 9, which was in effect
performed by systems engineering management. There is, however, a section for
Project Support, which addressed programme, financial, data, quality and
configuration management. As the work was so complex and unpredictable, systems
engineering was generally contracted on a cost plus basis.

Operations
analysis

Requirements
analysis

Systems
design

Equipment
engineering

Software
engineering

Test &
integration

Installation &
commissioning

Project
support

Wider system
System
boundaries

Scenarios/
phases
Organizations

Objectives

Functional
decomposition

Performance

Funtional/
physical
mapping
Installation
Connectivities
Capacities
Information
rates
Environments
Support needs
Design drivers

Architectures/
topologies
Option
tradeoffs
Interfaces
Human factors
Sensors

Communications

Processing

A.R.M.

Interfaces

Subcontractor
liaison

Factory
test

In-service test

Integration rig

Simulator

PDR
Interfaces
Operating
systems
Data security
DBMS
Environment
simulation
Exercise
In-company
support
In-service
support

URS

SRS

PDR

Rigs
Environment
simulation
Operational
simulation
Trials
Results
analysis

URS

SRS

PDR

Installation
design

Transport &
installation
Commissioning

Acceptance
trials

Quality
assurance
Configuration
management
Data
management

Financial
management
Programme
management
P.D.S.

A.R.M.- availability, reliability, maintainability DBMS-database management system PDS-post design/delivery services

URS SRS PDR

Figure 9. Typical Systems Engineering and Project Engineering Skills circa 1985
(Hitchins, 1986)

Updating	
 Systems	
 Engineering	

Since 1986, times and situations have changed. The archetypal plan of Figure 8 would no
longer suffice, in particular because situations, issues and problems have become
evermore complex. Major steps forward have been made in:

• complex problem-solving,
• dynamic simulation,
• dynamic architecture and its impact on system performance,
• genetic algorithmic systems design methods

1 Note the contemporary use of ‘equipments’ to denote technological components, which
today are confusingly (erroneously?) called ‘systems.’

 16

• networking,
• psychology and human behavior,
• robotics,
• understanding of deterministic chaos and self-organized criticality in systems
• and many, many more.

The same fundamental concepts and principles still define systems engineering, however:
systems engineering seeks to create an optimum (best) solution to a complex problem,
employing the same principles of holism, synthesis and organicism as guiding lights. And
the understanding persists, too, that complex systems exhibit emergent properties, where
the whole is greater than the sum of its parts, such that emergence may offer significant
advantage in performance, capability, effectiveness and affordability.

The challenges presented by complex problems were researched in the 1980s and
subsequently. Systems-theoretic ‘soft’ methods were developed, specifically aimed at
“messy organizational problems,’ so, dealing with groups of people as subsystems,
functioning and interacting within some social system. Problem-solving methods formed
around the GPSP of Figure 6, a leading proponent being Checkland’s Soft Systems
Methodology (SSM)(Checkland, 1981).

The GPSP also inspired a more general problem-solving methodology – the Rigorous Soft
Methodology (RSM) (Hitchins, 2007), which is systems-tool supported, but which has yet
to prove as popular as SSM. Combining the RSM with other systems tools and methods
results in a Systems Methodology shown at high level in the Behavior Diagram of Figure
10. There could be other systems methodologies, according to the particular SE paradigm
considered. However, the Systems Methodology of Figure 10 is sufficiently high level to
be applicable, for example, to the continuous circular flow paradigm (Toyota style) and to
in vivo systems engineering, such as that prosecuted by armed forces on land, at sea, and
in the air, often in the middle of operations, and sometimes as a result of inflicted enemy
damage. (The ill-fated Apollo 13 mission also gave rise to some remarkable in vivo
systems engineering, which resulted in the safe return of the crew after their in-space
catastrophe…)

Even at high level, the Systems Methodology reveals many aspects of systems thinking,
architecting and design which were not evident in the SE Plan of Figure 8, including
Problem and Solution Spaces, Prime Mission Functions, containing and sibling systems
(for environment and context), concept of operations (CONOPS), functional and
functional/physical architectures.

The Behavior Diagram of Figure 10 comprises three columns: Input, Function/Process,
and Output columns. The center column shows a logical succession of
functions/processes, 1 to 7, from ‘Exploring the Problem Space’ to ‘Creating and Proving
the Solution System;’ these have been encountered already in Figure 2. The right hand
column shows the outputs, or deliverables from each process: since the processes form a
logical sequence, so too do their outputs. At left are inputs, including proprietary systems
methods, as listed in the inset box. (Systems methods are, by definition, methods that are
problem, scale, situation and solution independent, and are therefore not inappropriate in
a high-level systems engineering methodology schematic.)

 17

Figure 10. Systems Engineering Methodology – Behavior Diagram (Hitchins, 2007)

Comparing the 1986 SE Plan of Figure 8 with the 2007 SE Methodology of Figure 10,
and remembering that they are at different levels vis-à-vis Figure 3 (Elaborating the SE
Paradigm), it is evident that the Systems Methodology concerns itself much more with
problem solving, conception and functional design, context and environment, whereas the
SE Plan emphasized the management “nuts and bolts” of bringing the various parts
together, making them work and proving that they perform according to design and

 18

customer expectations. In this, the SE Plan assumed that the solution system was socio-
technical or technological, which would have been reasonably expected at the time.

Figure 11. Systems Engineering – an Ontology

A	
 Contemporary	
 SE	
 Ontology	

Figure 10 presents the overall process of going from Problem Space to Solution Space as
a Behavior diagram. An alternative representation of the same journey is presented in
Figure 11 in the seven marked steps:

1. Understand the problem and develop conceptual solutions
2. Develop one or more concepts of operations (CONOPS) in context.
3. Gather the necessary functions and behavior from the various sources shown, to

create the sum of functions which would be needed, interacting in the future
environment, to provide a purposeful, effective solution to the problem

4. Organize functions and orchestrate their interactions to create a dynamic,
interactive functional architecture operating and exhibiting emergent properties in
(simulated?) context and environment.

5. Map functional architecture on to one or more physical architectures, specifying
the whole, the parts and the interactions in solution-transparent form for
acquisition or development or both.

6. Integrate the acquired parts in simulated or real context and environment, to create
a whole with the same emergent properties in context as those of Step 4.

7. Install, commission, etc., the whole into the solution space as a new system, a
replacement system, a reorganized system

 19

At each and every step, including the last one, check that the developing solution system
solves the problem in context.

Summary	
 &	
 Conclusions	

Systems engineering appears founded, not in physics as one might suppose engineering to
be, but in biology and anatomy, which – with their Levels of Organization – had
previously developed a cogent approach to the accommodation and management of
complexity. A biological metaphor is, then, consistent with systems engineering’s:
approach to complexity management; purpose in systems; and, in its unique emphasis on
emergence and emergent properties.

Systems engineering has firm philosophical and systems theoretic foundations. Systems
engineering incorporates fundamental principles, which – while not assuring universal
success in every outcome – can afford high-integrity solutions to large-scale, complex and
dynamic problematic situations and issues, where fathomable by innovative systems
thinkers, architects and engineers. Ignoring such foundations prejudices successful
outcome.

The first of these founding principles is holism: the theory that parts of a whole are in
intimate interconnection, such that they cannot exist independently of the whole, or
cannot be understood without reference to the whole, which is thus regarded as greater
than the sum of its parts. Holism applies equally to the complex problem, the complex
solution, to complex systems engineering-as-a-system, and is the foundation for
optimization, i.e. best performance in context.

The second principle, synthesis, is the opposite of reduction. Reduction provides
knowledge, of ‘how things work.’ But reduction views parts in mutual isolation, such that
the effects of cooperation, coordination, synergy and context are overlooked; it is these
that conspire to create emergent properties, which may be disregarded by engineers
employing reductionist methods, but are fundamental to the synthesis of complex systems.

(Traditional systems engineering methods such as functional decomposition, the waterfall
method and the Vee-method are reductionist, not holistic. They stem from software
methods; it may be reasonable to decompose a software function into separate sub-
functions, where – within the software at least – there will be no subsequent interaction
between the sub-functions that may affect their respective behavior. Systems
decomposition into separate subsystems is not valid, however, since the various
subsystems will affect each other’s respective functioning and behavior, as do the organs
within the human body.

The third principle, organicism, emphasizes organization and architecture. Functional
architecture is the pattern formed by mutually bound clusters of functions on one hand,
and coupling between such clusters on the other (functional binding and coupling.)
Architecture emerges ideally from the problem as a configuration to enhance performance,
availability, survivability and security, to optimize emergent behavior/performance-in-
context.

 20

These three guiding principles are observable in ‘natural systems engineering,’ which has
evolved over the last 520 million years: complex living organisms serve as metaphors for
complex manmade social, socio-technical and technological systems. E.g., Nature’s
organisms are maximally efficient, consistent with survival. (Lotka, 1922).

Paradigmatically, systems engineering can be seen as problem solving, or perhaps as
maintaining circular flow. The latter applies not only to industrial systems engineering in
Japan, but also to ring-roads around major cities (London’s M25, Paris’ Périphérique,
Washington’s Capital Beltway, etc.), to airports (e.g. Heathrow, Stansted and Gatwick
around London), to ‘ring main’ systems for digital communication, electrical and water
supplies, and to many more complex transport, logistical and infrastructure systems
designs that have found the circular paradigm appealing, robust and practical.

Final	
 Note The philosophy of systems engineering set out above appears at odds with
some current practice. Yet, the philosophy is rational, logical, justifiable and
demonstrable. Compared with some contemporary practices:

• Systems engineering is founded in systems theory and practice, and so is
substantially different from multidisciplinary engineering (i.e. engineering);

• Managing complexity is “built in;” so, too are innovation and creativity;
• Orthodox hierarchy displaces the tautologically challenged ‘system of systems’
• There is no mention of project management: systems management appears both

necessary and sufficient
• If the SE philosophy is to continually evolve and adapt systems to changing

circumstances then there is no perceivable ‘end,’ therefore no anticipatable system
lifecycle (although there may be many technological lifecycles.)

• There has been little mention of cost. SE philosophy finds “solving the problem”
to be both necessary and sufficient, and many of the finest achievements of
systems engineering have not been noticeably cost-limited. Cost is principally for
engineering…

o Premature consideration of cost in systems engineering can impede
innovation, restrict creativity and result in ineffective, short-lived solutions
that prove more expensive in the long run…

o Contemporary emphasis on cost, performance and schedule is consistent
with multidisciplinary engineering, and with the engineering of systems,
but not with ‘systems engineering as complex problem solving.’

o Systems design may be instantiated using many different approaches,
including commercial off-the-shelf (COTS) artifacts, phased implementa-
tion, manpower in place of machines, etc; so cost derives mainly from the
different ways in which systems designs may be engineered… yet each
solution may “solve the problem.”

o However, cost can be of concern where, for instance, there is a view to
optimize overall systems design for best performance in context, using e.g.,
cost-effectiveness (‘best value of money’) as an optimizing parameter…

Finally, the systems theoretic SE philosophy espoused above – although rational and
logical – nonetheless may emerge as something of a surprise. The correspondence

 21

between emergence and the management of complexity in biology/anatomy on the one
hand, and man-made systems and systems engineering on the other, shown in Figure 1,
may appear obvious once expressed, but is neither widely appreciated nor taught.

(D K Hitchins) Monday, June 11, 2012

References	

Ackoff R.L. and Emery, F.E., (1972) On Purposeful Systems, Aldine-Atherton, Chicago
IL

Bertalanffy, Ludwig von, (1950) An Outline of General System Theory, British Journal
for the Philosophy of Science 1, p. 139-164

Checkland, P.B., (1981) Systems Thinking, Systems Practice, John Wiley, Chichester

Hitchins, D.K., (1986) Managing Systems Creation, IEE Proceedings, Vol.133, Part A,
No 6

Hitchins, D.K., (1992) Putting Systems to Work, Wiley and Sons, Chichester, UK

Hitchins, D.K., (2003) Advanced Systems Thinking, Engineering & Management, Artech
House, Norwood MA

Hitchins, D. K., (2007) Systems Engineering: A 21st Century Systems Methodology, John
Wiley, Chichester

Lewin, K., (1949) Frontiers in Group Dynamics: Concept Method and Reality in Social
Science: Social Equilibria and Change. Human Relations, 1, (1), 5-41

Lotka, A.J., (1922) Contribution to the Energetics of Evolution. Proc. Natl. Acad. Sci., 8,
147-155

Womack, James P., Jones, Daniel T., & Roos. Daniel, (1990) The Machine that Changed
the World, Rawson Associates, NY

