

Systems Architecture

- At one and the same time:—
 - Least understood feature of Command & Control Systems, but...
 - ...most significant feature:
 - » systemic—affects everything
 - » affects decision speed
 - » connects decision-makers to information
 - » connects decision-makers to forces, i.e. enables control
 - » tolerates damage, i.e. reconfigures
 - » self-heals, i.e. repairs itself (with/without humanhelp)
- Different Missions dictate different architectures to enable & support different levels of Performance, Survivability, etc. Yet...
- There is no science relating task to corresponding "best" architecture

Animal Architectures

Key deductions include: —minimum variety for viability, importance of waste disposal, non-scalability, physical protects vulnerable communications, organs

Alien Animal Architecture?

- The microbe from Mars(?)
- Order midst disorder

Typical Interacting Command Architectures

Kinds of Architecture

- Structure offers two main archetypes:—
 - Layered architectures,
 - » enabling or resisting passage through successive layers.
 - » process-oriented manufacturing, communications, defence, security, trees and plants, Sun, alimentary canal...
 - Clustered architectures
 - » grouping reduces component interaction energy.
 - » human organization, circuit board and microcircuit design, biological "designs", book topics, warehouses, ethnic restaurants, libraries...

Learning from History

- Designing **optimum** systems *ab initio* "difficult to impossible"
- Best systems evolve. Takes:—
 - harsh, varied, testing threat environment, real failures, trial and error
 - time
- Many present-day systems **never tested in anger**—will designs prove effective...?
- One approach—learn from history, but...
 - you have to read history carefully and translate the lessons into present and future

...So, How Many Layers?

Maiden Castle, Dorset— 1500BC—450AD

Image processed to enhance layer visibility

- Counting earth ramparts, 4/5 layers of defence
- Additional earthworks guard entrances—always a weak point
- Counting ditches between ramparts too, ≥ 7
- ≥ 7 appears repeatedly in all kinds of architectures...

Layered Defence— Harlech Castle 1277-1330

ISO Open Systems (7 layer) Interconnection Peer-to-Peer Logical Relationships Node A Node B • Request Service Application Application Service Status Source Encoding Presentation Presentation Sink Encoding Conference/User Group ConnectionSynchronize User Tasks Session Session • Error/Flow Control Transport Transport • MSG Assemble/ Disassemble Network Network Relay Data Link Data Link Services Physical Physical • Route/Congestion Control Physical Transmission Medium • Internetwork/Packetize Point-to-Point Connection Electronic/Photonic Signals MSG=Message Point-to-Point Error Control Cable/Wire Connections

Simple Mathematics of Multi-Layered Defence

$$P = 1 - (1 - p)^{N}$$

where...

p...is the neutralization probability per layer

N...is the number of layers

P...is the expected overall Neutralization

N.B. Assumes all layers have equal p (1-p) is the *leakage* probability per layer

Simple Multi-Layer Maths

- One Layer alone vulnerable
- Must give v. high protection
- Difference between 6 and 7 layers v. small
- N.B. Mathematics assumes all layers equal

Layered Defence—Performance Optimization?

- -1 layer at p = 100% (or 0% leakage)
- -4 layers at p = 60% (or 40% leakage)
- -7 layers at p = 50% (or 50% leakage)

Overall

Probability per layer

Neutralization

- Assumes all layers are equal
- Static viewpoint

Variation in Four-Layer Performance

Simulation of 4layer defence-indepth

Equal Layers—layer has same leakage

Tight Outer, Loose Inner Layers—

leakage lower on outer layers, higher on inner layers

Tight Inner , Loose Outer Layers—

leakage higher on outer layers, lower on inner layers

- Against intuition, best overall performance (lowest % penetration) corresponds to tight *inner* layers, i.e. loose *outer* layers
- Arises because of more even workload share between layers

Developing Architecture from Task, Activity and Process

- Step 1. Identify separate Tasks, Activities, Processes
 - e.g. Acquire Suppliers Order Parts Receive Parts
 - Assemble Test Assembly Sell Make Profit Survive
 - Repair Supply Parts Train repairers Innovate Design
 - Attract Designers
 Improve Quality
 Conceive
 Design
 Prototype Product
 - Engineer Process Acquire Markets Maintain workforce
- <u>Step 2</u>. Establish relationships between every task/ activities/process on a pairwise basis (SAATY)
- Step 3. Develop architecture using layers and clusters emerging from relationship matrix (Warfield's ISM)

Layered Architecture—Summary

- Yes, there is a math-based science based on ideas of successive processes
- ...and, Yes, there is a lot to learn:—
 - Is there an optimum number of layers?
 - If so, under what conditions?
 - Can we determine the "goodness" of an architecture?
 - Can we "measure" one architecture as "better" than another?
- Examining clustered architectures may give a clue

Essence of Systems Architecture

- Moving two parts closer extends other links
 - there must be some optimum arrangement for *overall*performance
- Systems Architecture design—finding optimum for whole system, not just some parts

Architecture and Systems

- The underlying essence of "system" is *order*
 - 'dent in fabric of entropy"
- So, may be able to measure the "degree of system-ness" in units of entropy—or neg-entropy?
 - lower entropy, greater "system-ness"
- Reducing system configuration entropy groups related entities into clusters, tightens the clusters
- C²/C³ designers familiar with this through ubiquitous N² Charts

The N2 Chart

N2 and Entropy

- Internal energy trapped within high entropy system—free to escape from low entropy system
 - organizational, management, CIS implications
- Entropy determined by number of ways entities can be arranged $(2^{N}-1)$
- N² chart can be **scored** to determine configuration entropy—the degree of disorder in the interaction pattern
- N² chart can be **evolved** using **genetic algorithms** to derive **minimum-entropy** pattern

Practical Example of Clustering

Following example archetypical of many organizational and CIS/Networking Issues:—

- C² Ops HQ comprises 12 cells— Intel, Situation Assessment, Logistics, communications, etc., on rectangular floor.
- Individual tasks engaging C² Ops HQ require one, two or more cells to respond in sequence, according to type.
- Pattern of tasks uneven, some types occurring more than others
- Cell staffs co-operate/co-ordinate by walking between cells
- Rectangular room only suitable space available.

Can anything be done to reduce overall response times by rearranging cell layouts?

C² Ops HQ Example—before

- Matrix represents path-lengths between cells A
 L. Numbers represent path utilization e.g. 1
 - = low, 2 = moderate, 3 = heavy
- Work index = Σ_i (Path-length i^* Utilization i^*) for i = 1 to 12
- Work index from matrix = 160

 Figure shows rectangular room with 12 cells, A—L, and arrows showing principal workflow paths

C² Ops HQ Example—after

- Matrix score = f(Entropy)
- Some separations increased, e.g. A to B, but overall path-length reduced from 79 to 36, i.e. by 54%
- Matrix rearranged to reduce overall value of Work Index by 65% in the work of communicating between cells
- New Work Index = 56

- Figure shows cells rearranged to maintain original work-flow logic, but reduce overall work Index
- Paths form "waterfall"

PUKH TAAD

Synthesizing Architecture

- C² Ops HQ example shows practical advantages of clustering.
- Genetic Clustering approach:—
 - accumulates and analyses data
 - maintains over view of whole, as aggregation, not just of parts (machines), but of interactions between all parts (material exchanges)
 - enables optimization of whole, rather than of each part piecemeal
 - hard numbers real, measurable results
 - breadth of application limited only by imagination of user

...Offers basis for auto-adaptive CIS/C4i architectures.....

Conclusion

- Architecture not generally recognized as design parameter
- Increasing system complexity emphasizes value of optimal architecture
- Goal of sound architecture:—
 - simpler, more efficient, more effective system
 - adaptable, damage-tolerant, sustainable performance
- Systems architecture amenable to rigorous scientific study

CIS community should adopt architecture as central, formal design subject for hardware, software, systems, organization, processing, networking, auto-adaptation...